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Lecture 1: Introduction

These notes are closely based on the first few chapters of the book by Farb
and Margalit [1].

1.1 Surfaces of finite type

A connected, smooth, oriented surface S'is of finite type if it can be obtained
from a compact surface (possibly with boundary 9S) by removing a finite
number of points. These will be our main objects of study in this course. As
well as being of obvious interest to topologists, surface of finite type, in the
guise of Riemann surfaces, have been studied since the nineteenth century
by complex analysts, algebraic geometers and number theorists.

Fortunately, the classification of surfaces tells us exactly what the possible
topological types of the surfaces S of finite type are.

Theorem 1.1 (Classification of surfaces of finite type). Every connected,
orientable surface of finite type is diffeomorphic to some Sg,, the surface
obtained by connect-summing g > 0 copies of the torus T? with the 2-sphere
S2, and removing b open discs and n points.

The closed surfaces S, = Sy 00 are the ones with no punctures or boundary
components. The compact surfaces S, are the ones with no punctures.
Another important invariant is the Euler characteristic

x(S)=2-2g-n-b.

Ezample 1.2. If x(S) >0 then g =0 and n+0b < 1. It follows that S is one of
S2 C or the compact 2-disc D2

Ezample 1.3. If x(S) =0 then either g=1and n+b=00or g=0and n+b=2.
Therefore, S is one of the following: the 2-torus 72, the twice-punctured

sphere (aka the punctured plane C,), the punctured disc D?, or the annulus
A=8x[-1,1].

Setting aside these finite lists of of exceptional examples, the remaining
surfaces of finite type satisfy y(S5) < 0. Shortly, we will see that that we can
study them using hyperbolic geometry.



1.2 Mapping class groups

When studying a surface .S, one naturally becomes interested in the group of
self-homeomorphisms Homeo(S). However, Homeo(S) is huge — an infinite-
dimensional topological group — which makes it difficult to study. The idea
behind the mapping class group is to rectify this problem by quotienting
out by homotopy. But homotopy isn’t quite the right notion here; since
the group Homeo(S) consists of homeomorphisms, we say that two self-
homeomorphisms ¢, ¢; of S are isotopic if they are related by a homotopy
¢; that consists of homeomorphisms ¢, for every t. Another way to say this is
that ¢o and ¢, isotopic if they live in the same path-component of Homeo(.S).

Definition 1.4. Let Homeo™(.S,05) be the group of orientation-preserving
homeomorphisms S — S that restrict to the identity on 05, equipped with the
compact-open topology (i.e. the topology of uniform convergence on compact
subsets). Let Homeog(S,dS) denote the path-component of Homeo™ (.S, 05)
that contains the identity. That is, Homeog(.S) is the set of elements that are
isotopic to the identity, where we require isotopies to fix the boundary. Note
that Homeoy(S,dS5) is a normal subgroup of Homeo™(S,9S5). The mapping
class group of S is defined to be the quotient

Mod(.S) := Homeo" (S, 05)/Homeoy (S, S .

There are several other possible definitions of mapping class groups: one
might only consider diffeomorphisms of S up to smooth isotopy, or homeo-
morphisms of S up to homotopy. In dimension 2, these definitions turn out
to give the same result, thanks to the following facts.

Theorem 1.5 (Baer, 1920s). If two orientation-preserving diffeomorphisms
of a surface S of finite type are homotopic relative to 0S, then they are
smoothly isotopic relative to 0S.

Theorem 1.6 (Munkres, 1950s). Every homeomorphism of S (relative to
0S) is isotopic to a diffeomorphism of S (relative to 0S).

Corollary 1.7. For any smooth S, there are natural isomorphisms
Mod(S) = Diff*(S,05) /Diffy(S,9S) 2 Homeo" (5,05)/ ~

(where ~ denotes homotopy relative to 0S).



Proof. There is a natural homomorphism
@ : Diff (.S, 05)/Diffo(S,05) - Mod(S),

since every diffeomorphism is a homeomorphism and a smooth isotopy is an
isotopy. There is also a surjection

U : Mod(S) - Homeo" (S,05)/ ~

since isotopies are homotopies. Theorem implies that ® is a surjection,
and Theorem implies that ¥ o ® is injective. The result follows. O

In this course we will pass freely between the continuous and smooth
points of view, without much comment. In general, continuous maps are
easy to build by gluing maps, while smooth maps have various convenient
regularity properties. (For instance, smooth curves have regular neighbour-
hoods.)

1.3 Context and motivation

Since mapping class groups arise in many different parts of mathematics,
many different motivations can be given. We'll give a few here.

From the point of view of topology, mapping classes give a convenient way
of constructing bundles. For instance, any self-homeomorphism ¢ : S - S
gives rise to a surface bundle over the circle:

M, =8 x[0,1]/ ~

where ~ identifies (z,1) with (¢(z),0). Note that changing ¢ by an isotopy
doesn’t change the resulting manifold, so in fact My only depends on the
mapping class of ¢. This is a huge source of examples of interesting 3-
manifolds. More generally, surface bundles over a connected cell complex B
correspond to group homomorphisms m B - Mod(S).

Next, we’ll give the ‘high-level” motivation for Mod(S). Geometers and
topologists are interested in studying all possible geometric structures on
the genus-g surface S;, while algebraists and number theorists are interested
in studying all possible complex structures on S,. These turn out to be
equivalent, and to be encoded in the points of a space M, the moduli space
of Sy. In particular, we'd like to understand the topology of M,. Now,
moduli space has a contractible ‘universal cover’ 7, called Teichmiiller space.
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The moduli space can then be recovered as the quotient of 7, by the action
of the ‘fundamental group’[] This ‘fundamental group’ of moduli space is
the mapping class group Mod(S,). In summary, Mod(S,) captures all the
topological information about the moduli space M.

Our final attempt at motivation is an analogy, which motivates a great
deal of research into mapping class groups. When studying the integer lattice
Z" in R™, one is naturally led to its group of linear automorphisms SL, (Z).
Our surfaces S correspond to tilings of the (Euclidean or hyperbolic) plane,
and placing a point in the centre of each tile describes a kind of lattice in
the plane. The mapping class group Mod(S) plays the role of the group of
automorphisms of that lattice. This leads us to think of mapping classes
as analogous to integer matrices, and we can try to develop machinery for
Mod(S) that is analogous to the techniques of linear algebra that we use to
study SL,(Z).

Here is a table that locates some of the objects that we will learn about
within this analogy.

Surfaces Tori

S (a surface of finite type) | 7™ (the n-torus)
7TlS Z2

Mod(S) SL.(Z)
mapping classes linear maps
closed curves on S vectors in Z"

Lecture 2: Surfaces and hyperbolic geometry

A closed curve on a surface S is a map (in the appropriate category) S* — S.
Closed curves play a role analogous to vectors in vector spaces. Although
the surfaces we study are topological objects, in order to compute in them it
is often useful to endow them with geometry — that is, a Riemannian metric
of constant curvature. For most surfaces, this geometry is hyperbolic.

!The scare quotes are because this isn’t quite true — it’s true in the setting of orbifolds,
but not in the setting of manifolds.



2.1 The hyperbolic plane
Recall that the hyperbolic plane can be modelled as the upper half-plane

H?={z+iyeC|y>0}
equipped with the Riemannian metric

dz? + dy?

d$2 = —2y .
Y

Geodesics are vertical lines and semicircles that meet the real axis perpendic-
ularly. This is called the upper half-plane model. This model makes it easy to
see that the group of orientation-preserving isometries Isom™ (H?) is precisely
PSLy(R), the group of Mébius transformations with real coefficients, which
acts on the upper half-plane in the natural way.

Another model is the Poincaré disc model, which is obtained by conju-
gating the upper half-plane by the Mobius transformation

z—1

Zh= —.
Z+1

This yields the open unit disc in C, equipped with the Riemannian metric

ds? = 4M )
(1-1r2)2
The details of the Riemannian metric itself aren’t so important, but note
that it is radially symmetric. In this model, the geodesics are still circles and
lines that meet the boundary circle at right angles.

The boundary at infinity of H? is the copy of S* that you see as the bound-

ary of the disc model of H?. We write A = H2 uOH?, which is homeomorphic
to the disc. Note that any isometry f € Isom™ (H?) of H? extend to a Mdbius
transformation f of E2, sending the boundary to itself. This gives us an easy
way to classify isometries of H?, according to the number of fixed points.

Let f € Isom™(H2). By the Brouwer fixed point theorem, f has at least
one fixed point in H’. We can now classify f by the number of fixed points
of f.

If f has at least three fixed points then, since it is a Mobius transforma-
tion, it is the identity.



If f has two fixed points &*,& then, since it preserves the hyperbolic
geodesic between them, &+ ¢~ must lie on OH?. (Otherwise, it fixes the
geodesic pointwise and has infinitely many fixed points.) In this case, f
is called hyperbolic or loxodromic. The unique geodesic line in H? with
endpoints £* is denoted by Axis(f), and f acts on its axis by translation
by a fixed distance 7(f). In the upper half-plane model, f is conjugate
to a dilation by e™(f). A geometric argumen shows that that, for every
x e H2 N\ Axis(f), d(z, f(z)) > 7(f).

The case when f has a unique fixed point ¢ € i splits into two sub-cases.
If £ € H? then f is called elliptic, and is conjugate to a rotation in the disc
model. If £ € OH? then f is called parabolic, and is conjugate to one of the
translations z — z + 1 in the upper half-plane model. In both cases, there are
points x € H? such that d(x, f(x)) is arbitrarily small.

2.2 Hyperbolic structures

In this section, we’ll assume to start with that S is compact. A geomet-
ric structure on S is a complete Riemannian metric of constant curvature
k =1,0,-1, in which any boundary components are geodesics. The Gauss—
Bonnet theorem asserts that

fs kdA =2mx(S)

so k necessarily has the same sign as x(.9).

In the case when x(S5) > 0, either S = S or S = D?. The sphere S?
admits a well-known geometric structure, while a hemisphere in S? gives a
geometric structure on the disc.

When y(S) =0, the only compact examples are the torus and the annulus.
In each case, it’s easy to realise S as a quotient of a convex subset of R? by
isometries. The Euclidean metric on R? descends to a metric on S of constant
curvature 0.

The (infinitely many) remaining cases all have x(S5) < 0. The following
theorem, which also applies to surfaces with punctures, guarantees a hyper-
bolic metric on S.

Theorem 2.1. Let S be a connected, oriented surface of finite type with
X(S) < 0. There is a convex subspace S of the hyperbolic plane H? and an

2See Question 4 of Example Sheet 1.



action of the fundamental group mS by isometries on S, with finite-area
fundamental domain, and a diffeomorphism

71'15\57 ~ 5.
In particular, S carries a metric of curvature -1.

Sketch proof. We will describe the case when S is closed, and leave the reader
to work out how to adapt the argument to the other cases. The genus-g
surface S can be constructed from a 4g-gon P by identifying sides in pairs,
in such a way that all vertices of P are identified with each other. By a
continuity argument, there exists a regular hyperbolic 4g-gon with interior
angles 7/2¢g; endow P with this metric structure. After gluing, this defines a
metric on S so that every point has a neighbourhood isometric to a disc in
H2. The universal cover S is a complete, simply connected surface of constant
curvature —1. A classical theorem of Riemannian geometry (beyond the scope
of this course) implies that S is isometric to H2. By construction of the metric
on S, the action of S is by isometries, and the desired diffeomorphism
follows from standard covering-space theory. O

We will call a surface S equipped with a geometric structure modelled on
the hyperbolic plane, as in Theorem a hyperbolic surface.

Lecture 3: Curves and isometries

3.1 Curves on hyperbolic surfaces

Let S be a hyperbolic surface. We shall see that the hyperbolic structure is
very useful for analysing elements of 7S or, equivalently, curves on S. A
closed curve is a map « : S' - S. It is inessential if it is homotopic to a
point or a puncture, and inessential otherwise

Standard algebraic topology gives us a bijection between homotopy classes
of loops S - S and conjugacy classes in m1S. By the classification of hy-
perbolic isometries, these elements of 7.5 can be either elliptic, parabolic or
hyperbolic. The next lemma tells us when the different types of isometries
occur.

3Beware! Farb-Margalit call a curve ‘inessential’ if it is homotopic to a point, a punc-
ture or a boundary component.



Lemma 3.1. Let S be a hyperbolic surface and o a closed curve on S.
(1) If « is elliptic then o is homotopic to a point.

(11) If « is parabolic then a is homotopic to a puncture.

(111) If a is an essential curve then « is hyperbolic.

In particular, .S is torsion-free.

Proof. By doubling S along its boundary, we may assume that 05 = @, and
hence that S = H2.

Since 715 acts freely on H?, if « is elliptic then it acts as the identity on
HZ, so « represents the trivial element of 7.5 and is homotopic to a point.

For (ii), without loss of generality, o acts on H? as the translation ¢ : z —
x + 1. Let the loop a be based at xg, and let Ty be a pre-image of zq in H?2.
Then « lifts to a path & from Zy to Zo+1 in H2. For each s € [0, 00), consider
the path &g : [0,1] - H?2 defined by ¢ = ao(t) + is. The path &g descends
to a loop agz in S. As s — oo, this family defines a homotopy from « to a
puncture in S.

By the classification of isometries of H?, to prove item (iii) it is enough to
show that if « is homotopic to a puncture then the corresponding isometry
is parabolic. If a is homotopic to a puncture then there is a family of closed
curves «g, all homotopic to «a, such that I(as) - 0 — if not, then we can
construct annuli embedded in S of unbounded area. Fixing a lift Zy of a(0)
to the universal cover H? and lifting homotopies, we obtain well defined lifts
&g of the a,. For each s, let 7, = a5(0), and note that o.Z; = &5(1). Then

T(a) <d(Zs,0.2s) = d(Ts, as(1)) < 1(cs)
whence 7(«) =0. So « is parabolic as required. ]

Hyperbolic geometry provides us with canonical representatives for ho-
motopy classes of curves. Note that the uniqueness part of this statement
fails when S is the torus.

Lemma 3.2. Let S be a hyperbolic surface and let o be a closed curve on
S which is not homotopic to a point or a puncture. Then there is a unique
geodesic curve in the homotopy class of a.
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Proof. Choose a basepoint xg € S for «, and a preimage T, in H?. Let & be
the unique lift of the composition

R- S!S S

(where R — S is the universal covering map) that sends 0 to Zy. Note that
the map & is Z-equivariant.

By Lemma « acts as a hyperbolic isometry on H?, preserving an axis
Axis(a). Let 7:H? — Axis(a) be orthogonal projection and, for each t € R,
let 4; : [0,1] — H? be the constant-speed geodesic from &(t) to 7 o a(t).
By Z-equivariance, 7; descends to a homotopy from « to a path  in the
image Axis(«) in S. Since (8 is contained in the image of a geodesic line, it
is homotopic to a geodesic curve. This proves existence.

For uniqueness, note that if «, 3 are homotopic geodesics in the same
homotopy class, their lifts & and 3 are geodesic lines that stay within a
constant distance of one another. It follows that their endpoints on OH?
are equal and hence, by uniqueness of hyperbolic geodesics, a = B , whence
a=p. n

Lecture 4: Intersections of simple closed curves

4.1 Simple closed curves and intersection numbers

A closed curve on a surface S is called simple if the map o : ST - S is
injective.

Essential simple closed curves play a role that’s analogous to basis vectors
in linear algebra. A couple of basic facts about simple closed curves will make
it much easier to work with them. As with homeomorphisms of S, rather
than working up to homotopy, we want to use the more refined notion of
150t0DY.

Definition 4.1. An isotopy between two simple closed curves aq,; is a
homotopy «; between them so that each «a; is a simple closed curve. An
ambient isotopy from oq to oy is an isotopy ¢ : S — S so that ¢y = idg and
a1 = ¢y 0 Q.

A priori, isotopies are harder to construct than homotopies. Fortunately,
the two notions turn out to be equivalent in this case.

11



Lemma 4.2. Two essential simple closed curves ag,aq on a surface S are
homotopic (relative to 0S) if and only if they are ambient isotopic.

The proof of this lemma is deferred till after we have the bigon criterion
below).

There are no essential simple closed curves in the sphere or the disc, and
only two isotopy classes in the annulus, so the first non-trivial case is the
torus. The following result, classifying simple closed curves on the torus,
is an easy exercise that provides good motivation. An element h of 7S is
called primitive if it is not a proper power h" for some n > 1.

Lemma 4.3. Let T? be the torus. Homotopy classes of essential simple closed
curves on T? correspond bijectively to the primitive elements of m1T? = 7Z2.

Proof. The proof is left as an exercise; see Example Sheet 1, question 8. [

In order to apply the work on geodesic representatives from the last lec-
ture to hyperbolic surfaces, we need the following lemma.

Lemma 4.4. Let S be an orientable hyperbolic surface, a: S* - S an essen-
tial simple closed curve and v : St — S the unique geodesic representative of
its homotopy class. Then vy is also simple.

Proof. Consider the unwrapped lift & of « to H?, the image of a copy of R.
Covering-space theory implies that « is simple if and only if, for any g € 7,5,
ga is disjoint from & unless g € (). Therefore, if the geodesic representative
7 is not simple, there is some g ¢ (7) = () such that gAxis(vy) intersects
Axis(7y) (recalling that Axis(y) =4). Since 4 and & have the same endpoints
in the boundary at infinity 0., H?, this is only possible if g preserves Axis(7).
But now it’s easy to see that ga cannot be disjoint from @, since g acts by
orientation-preserving isometries. O

For hyperbolic surfaces, there’s no easy algebraic characterisation of sim-
ple closed curves. However, the following necessary condition is useful.

Lemma 4.5. If a is an essential simple closed curve on S then o represents a
primitive element of m1S. Furthermore, if S is hyperbolic then the centraliser

C(a) =(a).

12



Proof. By Lemma [1.3] it suffices to consider the hyperbolic case. Note that
the statement about centralisers implies being primitive. By Lemma (3.2 we
may assume that « is geodesic. Recall that the action of oz on H? preserves
the geodesic line Axis(«), and that this line consists of those points that are
moved precisely 7(«).

Suppose that g € C'(«). For any chosen point = € Axis(«),

d(g(z),ag(z)) = d(z,g" ag(x)) = d(z,a(x)) = 7(a)

so g(x) is also moved 7(a), and hence g(z) € Axis(a). Therefore, C'(«) also
preserves the geodesic line Axis(«).

By the freeness and proper discontinuity of the action, the quotient
C(a)\Axis(«) is a circle. The map a: ST - S now factors as

(a)\Axis(a) — C(a)\Axis(a) = S

where the first map is a covering map. But « is injective, so C'(«) = (a), as
required. O]

It is often useful to put an inner product on a vector space to check if two
vectors are linearly independent. Pursuing the analogy with linear algebra,
there is a structure on S that resembles a naturally defined inner product
— the intersection number. (More precisely, intersection number resembles a
symplectic form.)

Definition 4.6. Let a, 5 be closed curves on a surface S. Their (geometric)
intersection number is

i, B)=  min #(a'nf).

In particular, if « is homotopic to a simple closed curve then i(«, «) = 0.

If anf is finite and, at every intersection, each curve locally separates
the other curve, then we say that a and [ are transverse. Two curves can
always be made transverse by a small isotopy. We say that two curves «, 8
are in minimal position if #(an f) =i(«, ).

4.2 Bigons

In order to compute intersection number, we need to be able to put curves
into minimal position. We do this using the bigons.

13



Definition 4.7. Let «, 3 be transverse simple closed curves on S. A bigon
is an embedded disc D? — S such the interior is disjoint from avu 8 and the
boundary 0D? decomposes as a union of closed arcs a U b, where a € o and

bcp.

Evidently, if there exists a bigon then o and § are not in minimal position.
The bigon criterion asserts that the absence of bigons is also sufficient to be
in minimal position. First, we need a lemma.

Lemma 4.8. If o, are transverse, essential simple closed curves on an
orientable surface S without bigons, then in the universal cover S, every pair
of lifts &, B intersect in at most one point.

Proof. Since «, 8 are simple, the lifts @ and B are embeddings in S. Suppose
that 0773 intersect in two points. Then there are subarcs of & and B that
bound a disc Dy in S (since S is homeomorphic to the sphere or the plane).
The preimages of o and [ give a cellular decomposition of Dy into discs. It
follows that there is an innermost disc D € Dgy, with one boundary arc a
contained in the preimage of «, and one b contained in the preimage of f3.

It remains to prove that the covering map S — S is injective on D.
Equivalently, we need to prove that, for any ¢ €e ;S ~ 1, ¢(D)n D = @.

If (D) intersects D then either ¢(D) contains D or ¢(9D) intersects
D. In the former case, ¢! sends D to D, so has a fixed point by the
Brouwer fixed-point theorem, and hence ¢ = 1 by freeness of the action of
the fundamental group, contradicting the assumption.

Therefore, ¢p(0D) intersects D, but the interior of D contains no lifts
of a or B, so ¢(0D) intersects dD. The deck transformation ¢ sends lifts
of a to lifts of a and lifts of § to lifts of 3, so either ¢(&) intersects & or
o( 3 ) intersects f3; without loss of generality, the former occurs. Because « is
simple, if ¢(&) intersects & then ¢ € («) (after choosing suitable base points)
and preserves a.

Now ¢ also preserves the set of intersection points of a with the lifts of
[. Therefore, writing x, and z_ for the two intersection points on 9D, we
have that either ¢ fixes x, or x_, in which case ¢ = 1 by the freeness of the
action, or, without loss of generality, ¢(x_) = x,. This last case leads to
contradiction, because ¢ is orientation-preserving, but o and S cross with
opposite orientations at z_ and x,. ]

14



Lecture 5: The bigon criterion and topological
type

5.1 The bigon criterion

We are now ready to state and prove the bigon criterion.

Proposition 5.1 (Bigon criterion). Transverse, essential, simple closed curves
a, B on a surface S are in minimal position if and only if there are no bigons.

Proof. One direction is obvious: if there is a bigon, then there is a homotopy
that reduces #(an ) by 2.

We prove the reverse direction in the closed hyperbolic case, and leave it
to the reader to adapt the argument to the other cases. Suppose that there
are no bigons.

Fix a lift & of o to H2. Consider our fixed lift & of a, and all the lifts 5;
of B that intersect it. The natural action of Z on & extends to a map on the
f3; and, since each lift intersects d; at most once by Lemma , the set anf
is in bijection with the number of Z-orbits of the ;. Therefore, to prove the
proposition, we need to show that modifying o and by homotopies doesn’t
alter whether or not a given pair of lifts & and /3 intersect.

Since S is closed, a acts as a hyperbolic isometry of H?, and the limits
&, =limy, .o a(t) are equal to the endpoints of the axis Axis(«). Likewise, a
lift 3 of B has the same endpoints 7, as Axis(3).

If & =n, and & =n_ then a and B are disjoint. Indeed, in this case «a, 3
share a common axis and the isometry a acts on the set of intersections an B ,
so if there is one intersection then there are infinitely many, contradicting
Lemma [4.8]

Suppose now that & =& but n, # n_. Then without loss of generality,
we may assume that £, = oo in the upper half-plane model, and a direct
computation shows that the commutator [«, 3] is a non-trivial parabolic
element of 71.5. This contradicts the claim that S is closed.

In summary, we have seen that if two lifts a, 3 intersect, then their
endpoints &, and 7, are distinct. Next, note that the parity of #(a&n B) is
determined by the pattern of the points {£.,7.} on the circle 9H?: if the pair
{&,,& } are in different components of S\ {n,,n_} then the parity is odd;
otherwise, the parity is even. Since the lifts intersect at most once, it follows

15



that the arrangement of the endpoints {&,,7.} on OH? determines whether
or not & and B intersect.

Changing a by a homotopy doesn’t change the endpoints £.. Indeed,
a homotopy a, : St x I — S lifts to a continuous, Z-equivariant map a, :
R x I — HZ2. Therefore, if o is homotopic to ag = a then the corresponding
lift &; remains within a bounded neighbourhood of &g, and so has the same
endpoints.

This completes the proof: changing o and /5 by homotopies doesn’t change
the endpoints of their lifts; hence, the same pairs of lifts cross, and so the
number of intersection points remains the same. O

Most importantly, this gives us an effective way to see that simple closed
curves are in minimal position. It also follows that geodesic representatives
are always in minimal position.

Corollary 5.2. If o, are distinct simple closed geodesics on a hyperbolic
surface S then they are in minimal position.

Proof. Suppose that D — S is a bigon for a and S. Since D is simply
connected, it lifts to an embedding into the universal cover D < H?, bounded
by a pair of geodesic lifts a, B . But there is a unique geodesic on H? between
the corners of D, so & = 3 and so a = 3. O

5.2 The annulus criterion

It follows from the bigon criterion that homotopic simple closed curves can be
made disjoint by an isotopy. We still need to analyse homotopies of disjoint
simple closed curves.

Proposition 5.3 (Annulus criterion). Let a, 8 be disjoint simple closed
curves on a surface S. If o and 3 are homotopic then o and B bound an
embedded annulus in S.

Proof. Again, we prove this under the assumption that S is a closed, hyper-
bolic surface and that o and 3 are essential, leaving the remaining cases to
the reader.

Fix a lift & of « to the universal cover H?. Lifting the homotopy defines
a lift 8 of B to H2, disjoint from & but remaining within a bounded neigh-
bourhood. It follows that & and 5 limit to the same points &,,&_ € OH?. The

union of @, § and {&,, &} forms an embedded circle in Ez, which bounds a
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topological disc R ¢ H2. The natural action of Z = () preserves & and /3 and
hence R. The quotient A = Z\R is a surface with two boundary components
and fundamental group Z, hence is an annulus.

It remains to prove that A embeds in .S, or, equivalently, that any covering
transformation g € m S such that g(R) n R # @ is in (a). Since a and [ are
simple and disjoint, ¢g@ is disjoint from § and either disjoint from or equal to
&. The same is true, mutatis mutandis, for gB3. Therefore, if g(R) intersects
R, it follows that g must preserve the set {£,,£_}, and hence the axis Axis(«).
Unless g = 1, it follows that Axis(«) = Axis(g), whence g € C'(«) = (a) by
Lemma [4.5] O

We can now prove that homotopic simple closed curves are ambient iso-
topic.

Proof of Lemma[{.2 Evidently, if two curves are ambient isotopic then they
are homotopic; we prove the converse.

Suppose then that o, are homotopic. After an isotopy, we may as-
sume that they are also transverse. Since every simple closed curve has
intersection-number zero with itself, it follows that i(«, 3) = 0. The bigon
criterion implies that every pair of transverse curves can be put into mini-
mal position by an ambient isotopy. We may therefore assume that o, 3 are
disjoint. By Proposition [5.3] it follows that o and S bound an embedded
annulus. Pushing across this annulus defines an ambient isotopy taking a to

. O

5.3 Topological type

One of the most useful facts in linear algebra is that any two bases are related
by an invertible linear map. To justify the analogy with linear algebra, we
would like to understand when two essential simple closed curves are related
by a homeomorphism. This turns out to be an easy consequence of the
classification of surfaces.

Definition 5.4. Any simple closed curve a on a surface S has a small annular
neighbourhood N(«) 2 S x [-1,1] € S, where « is the core curve St x {0}.
The cut surface associated to « is the surface

Se =S~ N(«)
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obtained by removing the interior N(«) of the annulus. Removing N(«)
introduces two new boundary circles a,a_ : S - 9S,; canonically, we may
take a to be the one for which the induced orientation from S agrees with
the orientation of «r, and a_ to to be the one for which the two orientations
disagree. Finally, we may recover S by gluing an annulus A = S' x [ along
the curves a_ and o:

S'=54Ua,ua. A.
The cut surface tells us how to classify simple closed curves.

Definition 5.5. The topological type of a simple closed curve a on a surface
S is the homeomorphism-type of the cut surface S,. If S, is connected then
a is called non-separating.

Example 5.6. Let S be the closed surface of genus g and o an essential simple
closed curve on S. The cut surface S, has

X(Sa) = x(S) +x(S") =x(5)=2-2¢

and 2 boundary components. If « is non-separating then, by the classification
of surfaces, S, is homeomorphic to S,_; 2 by the classification of surfaces, so
all non-separating curves have the same type. If « is separating then, by
considering Euler characteristic, we see that

Sa = SkJ [ Sg—k,l

for some k < g. Therefore, there are |g/2| topological types of separating
curves.

Lecture 6: Change of coordinates and the Alexan-
der lemma

6.1 Change of coordinates

In fact, topological type is a complete invariant for mapping class group
orbits of curves: the classification of surfaces implies that curves have the
same type exactly when they are related by a diffeomorphism of the surface.
This principle is called change of coordinates.
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Proposition 6.1 (Change of coordinates). Two essential simple closed curves
a, B on a surface S have the same topological type if and only if there is an
orientation-preserving homeomorphism ¢ : S — S that fizes S, with ¢poa = 3.

Proof. One direction is obvious: if ¢ exists then it induces a homeomorphism
So = Sp, so o and 3 are of the same topological type.

For the other direction, we suppose that a homeomorphism ¢ : S, - Sg
exists. The proof consists of making successive modifications to ¢ to make
it of the form that we want.

First, note that every orientable surface double covers a non-orientable
surface. Hence, Sg admits an orientation-reversing self-homeomorphism, and
so we may assume that ¢ is orientation-preserving.

Second, note that Homeo™(S3) acts as the full symmetric group on the
set of boundary components of each path component of Sg. Hence, we may
assume that ¢ preserves the components of 0.5, and sends o, to ., with the
correct orientations.

Our penultimate task is to extend ¢ across the gluing annuli to recover
a homeomorphism S — S. Indeed, note that ¢ o a_ and ¢ o a are disjoint
curves in S, both homotopic to 3, and hence to each other. Therefore, by
Proposition [5.3] they bound an embedded annulus in S, which because of
orientation must be disjoint from the interior of Sz, and so we may extend
¢ across the gluing annulus of S, to a homeomorphism S — S.

Finally, ¢oa and  are homotopic, hence ambient isotopic by Lemma 4.2}
so we may compose ¢ with a homeomorphism to ensure that poa=75. [

This makes topological constructions with arbitrary curves much easier:
after identifying the topological type, we may apply a homeomorphism and
reduce to our favourite representative. The next corollary is a nice example
of this.

Corollary 6.2. If a is a non-separating simple closed curve on S then there
is a non-separating simple closed curve  with i(«, 5) = 1.

The same idea applies to pairs of curves.

Proposition 6.3. Suppose that oy, 51 and as, By are pairs of simple closed
curves on a surface S with i(aq, 1) = i(ag, B2) = 1. Then there is a homeo-
morphism ¢ : S - S with ¢(ay) = ag and ¢(B1) = Po.
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Proof. The curve [3; descends to an arc on S,, with one endpoint on each
of the a;.. Cutting along this arc gives a surface S,, g, with one additional
boundary component v, and four marked points, corresponding to the preim-
ages of a; nB;. We can construct S,, g, similarly, including a boundary com-
ponent v, with four marked points, and the classification of surfaces again
gives a diffeomorphism ¢ : S,, 5, = Sa,,p,- As in the proof of Proposition [6.1],
we may assume that ¢ sends v; to ¥5. Furthermore, after modifying ¢ by an
isotopy, we may assume that ¢ sends the gluing relation on ~; to the gluing
relation on ~,. Therefore, ¢ descends to S, and the result follows. n

6.2 The Alexander lemma

Computations of mapping class groups need to start with the simplest ex-
ample. Consider the closed disc D? = Sy 1.

Lemma 6.4 (The Alexander lemma). The mapping class group of the closed
disc, Mod(D?), is trivial.

Proof. Let f: D? -» D? be a homeomorphism that restricts to the identity
on 0D? = S*. Then

1-t)f(x/(1-1 O<|z|<1-t¢
iy | @DIGIA-0) <l
x 1-t<fz[<1
defines an isotopy between f = fy; and the identity idp2 = f;. m

Since every f; leaves the origin fixed, the proof give the same result for
the punctured disc D% = Sy ;1.

Lemma 6.5. The mapping class group of the punctured disc, Mod(D?), is
trivial.

6.3 Spheres with few punctures

Next, we will compute the mapping class group of the sphere with 0,1,2 or
3 punctures: Sy, for n < 3. Since there are no essential curves on these

surfaces, it is useful instead to work with arcs.
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Definition 6.6. A (proper) arc is a continuous (or smooth) map a: [0,1] —
S so that a(0) and «(1) are either punctures or on 95, and a(0,1) is con-
tained in the interior of S. A proper arc is simple if it is an embedding on
(0,1), and essential unless it is homotopic (rel. endpoints) into a puncture.
(Note that homotopies are required to hold punctures fixed.)

Many of our previous results about curves also apply to arcs. Homotopies
of arcs are always relative to endpoints. Arcs are homotopic if and only if
they are isotopic, and we can put transverse arcs into minimal position using
the bigon criterion. As with curves, we may cut a surface S along a simple
arc «, and S, denotes the resulting cut surface.

Next, we will characterise the essential arcs on a 3-punctured sphere.

Lemma 6.7. Let o, 3 be simple arcs on the 3-punctured sphere with distinct
endpoints. If o, 8 have the same endpoints then they are isotopic.

Proof. Putting the third puncture at co, we may take «, 5 to be arcs between
two points in the plane. After an isotopy, we may make them transverse. If
they intersect then an innermost disc argument as in Lemma [4.8| exhibits a
bigon. Isotoping one of the curves over this bigon, we can reduce the number
of intersections. Therefore, we may assume that «,( are disjoint. Their
union is now an embedded circle in the plane, which bounds a disc. Hence,
they are isotopic. O

Let Sym(n) be the symmetric group on n elements. A homeomorphism
¢ of S permutes the n punctures of S, leading to a surjective homomorphism
Mod(S) - Sym(n).

Proposition 6.8. Let S = Sy 3, the 3-punctured sphere. The natural homo-
morphism Mod(Sp3) - Sym(3) is an isomorphism.

Proof. We may identify S = Sp3 with C~ {0,1}. We only need to prove
that Mod(Sp3) — Sym(3) is injective. Suppose, therefore, that ¢ is a self-
diffeomorphism of C \ {0,1} that fixes 0,1 and oo.

Let « be a simple, smooth arc from 0 to 1. The composition ¢ o « is also
a simple, smooth arc from 0 to 1, so Lemma is ambient isotopic to a.
Therefore, after an isotopy, we may assume that ¢ fixes «, and so descends
to a diffeomorphism ¢ of the cut surface S,. But S, is a punctured disc,
and so ¢ is isotopic to the identity relative to the boundary, by Lemma .
Regluing the boundary, this isotopy descends to an isotopy from ¢ to the
identity, as required. O
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This result quickly implies the same result for the other low-complexity
surfaces.

Corollary 6.9. If S is either the 2-sphere S? = Sy, or the plane C = Sy,
then Mod(S) is trivial. If S =C, =Sy, then Mod(S) = Z/2Z.

Proof. In each case, the result asserts that the natural map Mod(S) —
Sym(n) is injective, where n is the number of punctures. Suppose, therefore,
that ¢ : S - S fixes the punctures. Since PSLs(C) is connected and acts
3-transitively on the 2-sphere, we may modify ¢ by an isotopy and assume
that ¢ fixes three points. Proposition now implies that ¢ is isotopic to
the identity, as required. O

Lecture 7: Infinite mapping class groups

7.1 The annulus

The annulus A =S x[0,1] = Sy is the first surface we will see for which
the mapping class group is infinite. As in Proposition [6.8] an important idea
in the proof is to consider the image of a suitable arc.

Proposition 7.1. For the annulus A, Mod(A) 2 Z.

Proof. Identify S with the unit circle in C. The universal cover A of A
is homeomorphic to the infinite strip [0,1] x R, with covering map A A
sending (x,y) = (z,exp(27iy)).

Consider a homeomorphism ¢ : A - A that restricts to the identity on
OA. Let ¢ be the unique lift of ¢ to A that fixes the origin, and let ¢
denote its restriction to {1} x R. Note that ¢; is a lift of the identity on
S1 x {1}, and so is translation by some integer n. The homotopy lifting
lemma implies that modifying ¢ by a homotopy changes n continuously, and
so n is constant (since Z is discrete). Therefore, we have a well-defined
assignment Mod(A) — Z given by [¢] = n. It remains to prove that this
assignment is an isomorphism of groups.

If v is another self-homeomorphism of A relative to 0A then uniqueness
of lifts implies that M = gEo @Z), from which it follows immediately that
Mod(A) - Z is a group homomorphism.
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For each n € Z, the matrix

()

defines a covering diffeomorphism A — A that descends to the identity on
each boundary component, and such that ¢, is translation by n. This shows
that Mod(A) — Z is surjective.

Let ¢: A > A be a self-homeomorphism relative to A, such that ¢ fixes
(0,1). To prove injectivity, we need to show that ¢ is isotopic to the identity.
Let 6 be the arc in A defined by 8(¢) = (¢,1) and let § be its lift starting at
the origin. Both 6 and ¢ o4 end at (0,1). After a small isotopy, we may
assume that ¢ and ¢ o 0 are transverse. Since 6 and ¢ o d have the same
endpoints, Lemma implies that ¢ and ¢od form a bigon. If the corners of
that bigon are not (1,0) and (1,1) then we may apply an isotopy to ¢ and
reduce the number of intersections. Otherwise, d and ¢ o  together form a
bigon, and so we may modify ¢ by an isotopy until it fixes §.

We now conclude as before. Cutting along 4, ¢ defines a diffeomorphism
6 of the cut surface Az that fixes the boundary. By the Alexander lemma, ¢
is isotopic to the identity, and so ¢ is too. O

The generator of Mod(A) is called a Dehn twist. In our analogy with
SL,(Z), they play the role of elementary matrices. Since most surfaces
contain many essential annuli, we shall see that they also usually contain
many Dehn twists.

7.2 The punctured torus

The torus T? = S! x S1 is the first surface with a really interesting mapping
class group. We shall see that Mod(7?) is a familiar group, but it is also rich
enough to give us a sense of what to expect from the mapping class groups
of higher-genus surfaces.

Recall that the fundamental group of the torus is m7? = Z?. We shall
identify Mod(7?) by making it act by automorphisms on m72. Since
requires a base point, it is more convenient to start with the punctured torus
T2 = Si10, and to think of the puncture as a marked point. Let ¢ be a
self-homeomorphism of T2, which we can think of as a homeomorphism of
T? that fixes the base point. Since it fixes the base point, it induces a based
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map from the torus to itself, and hence an automorphism of w72, by the
functoriality of ;. So we have defined a group homomorphism

Mod(T?2) - Aut(Z?) = GL(Z).

Theorem 7.2. For the once-punctured torus T2, the natural homomorphism
to GLy(Z) induces an isomorphism

Mod(T?2) = SLy(Z).

Proof. We have already seen that the map is a homomorphism. We shall
show that it is injective, and surjects SLy(Z).

To show injectivity, we take a self-homeomorphism ¢ of T? acting as the
identity on 7m;72. Let «, 8 be the standard based loops in T that generate the
fundamental group. That is, a: [0,1] - T? sends ¢ — (exp(2mit),1) and § :
[0,1] = T? sends t = (1,exp(2mit)). Since ¢, is the identity automorphism,
¢ o «v is based homotopic to « and so, the version of Lemma for arcs,
we may modify ¢ by an isotopy so that ¢ o a = a. Therefore, ¢ induces a
self-homeomorphism ¢ of the cut surface T2, which is an annulus.

On this annulus, the loop S is cut to becomes the standard arc o that
appeared in the proof of Proposition [7.1] Lifting the universal cover of the
annulus to the universal cover of the torus gives a diagram

[0,1] xR —— R?

| |

T2 — 5 T2

which identifies the lifts of ¢ o § and ¢ o B at the origin. But ¢ o 3 is based
homotopic to 3, so its endpoint is (1,0); hence the same is true of ¢ o 4.
Therefore, ¢ represents the trivial element of the mapping class group of the
annulus, by the proof of Proposition . Thus ¢ is isotopic to the identity
on T2 and so, regluing the boundary, ¢ is isotopic to the identity on 72, as
claimed.

To identify the image of the homomorphism Mod(7?) — GLy(Z), note
that any A € GLy(Z) preserves the integer lattice Z? inside R?, and hence
descends to a continuous self-map ¢, of the torus 72 = R2?/Z2. Since A is
invertible, this map is a homeomorphism, with inverse ¢ 4-1. To identify the
action on the fundamental group, note that the lifts at the origin satisfy

proa=Adaand dsofB=Ap
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whence (¢4). acts as multiplication by A. In particular, every element of
Mod(7?) is represented by some ¢ 4.

Finally, note that, by considering the action of A on the fundamental
square in R?, we see that ¢4 acts on Ho(7?) as multiplication by det(A).
Since ¢ 4 is orientation-preserving if and only if this action is trivial, it follows
that the image of Mod(7?) is SL2(R). O

Lecture 8: The torus and the Alexander method

8.1 The torus

It turns out that there is a trick that enables us to pass from the punctured
torus to the torus. The torus is unique among closed surfaces in that it
carries a group structure (namely the quotient group structure on R2?/Z?),
which we can exploit.

Corollary 8.1. For the torus T2,
Mod(T?) = SLy(7Z) .

Proof. Think of the puncture on T? as a marked point, which we may take
to be the identity 0 of T2. Forgetting the marked point defines a natural
homomorphism
Mod(T?) - Mod(T?)
which we will show is an isomorphism. The result then follows from Theorem
7.2
For any self-homeomorphism ¢ of T2, choose a continuous path « from 0

to ¢(0). Now,
¢i(x) = (a(t)) ()

defines an isotopy from ¢ = ¢y to a homeomorphism ¢, that fixes 0. This
shows that the homomorphism Mod(7?2) — Mod(7?) is surjective.

Let ¢; be an isotopy between two homeomorphisms ¢ and ¢; of T2 that
each fix 0. Let 5(t) = ¢,(0), a loop based at 0. Then

$i(x) = (B()) " du(x)

is an isotopy from ¢y to ¢; that fixes 0 at every time ¢. This shows that the
homomorphism Mod(7?) - Mod(73) is injective. O
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Remark 8.2. This is the classical modular group, which inspires the notation
Mod(.5).

8.2 Pairwise isotopy

A common theme in these computations is to analyse the action of a home-
omorphism ¢ via its action on sets of curves or arcs in S. The bigon and
annulus criteria together gives a practical method for checking whether or
not pairs of curves are isotopic. We would like to extend this to sets of curves
or arcs, so it would be convenient if it were true that pairwise isotopic sets
were ambient isotopic. Unfortunately, this is not true in general: consider for
instance three arcs intersecting pairwise and bounding a triangle. However,
this turns out to be essentially the only obstruction.

Another subtlety is that we will need to work with curves and arcs up to
reparametrisaion. Therefore, let’s write a » (5 for a pair of curves or arcs that
are equal up to an orientation-preserving homeomorphism of their domain.

The next lemma now enables us to determine easily when suitable sets of
curves and arcs are isotopic.

Lemma 8.3. Let S be a surface, with collections {av, ..., an} and{B,...,Bn}
of essential simple closed curves and simple proper arcs on S. Suppose that:

(i) the {«;} are pairwise in minimal position, and the same for the 5; (we
say they have no bigons);

(11) the {c;} are pairwise non-isotopic, and the same for the 5; (we say they
have no annuli);

(111) for distinct i,j,k, at least one of a; Ny, oy Ny and ap Ny is empty,
and the same for the B; (we say they have no triangles).

If «; is 1sotopic to B; for each i then, after an ambient isotopy of S, we have
a; ~ 3 for each i.

Proof. The proof is by induction on n. The base case, n = 1, follows from
Lemma [4.2l By induction on n, we may assume that «; ~ 3; for i <n. It
remains to show that we can isotope «,, to 3,, while keeping «; identified
with 3; for i < n.

If a,, and (3, are not disjoint then, since they are isotopic, they form a
bigon D. By hypothesis (i), any «; = §; that intersects D cannot form a
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bigon with «,, or (,; therefore it intersects both «,, and ,. Furthermore, if
a; » f; and o ~ B both intersect D, then hypothesis (iii) implies that they
cannot intersect each other. Therefore, the bigon D is crossed by disjoint
arcs of the a; » (;, and so there is an isotopy of «,, that holds the remaining
«; identified with the (;, but reduces the number of intersections of «,, and
B,. Therefore, after finitely many of these isotopies, we may assume that «,,
and 3, are disjoint.

It follows that «,, and 3, together bound an annulus A in S. By hypoth-
esis (ii), no a; » f3; is contained in this annulus. By the same arguments as in
the previous paragraph, the arcs of a; ~ §; that intersect A cross from «,, to
B,. It follows that there is an ambient isotopy taking «,, to 3, while holding
the «; identified with ; for ¢ < n. This completes the proof. O

8.3 The Alexander method

In our computations above, we used the Alexander lemma to certify that
certain mapping classes were trivial. This argument generalises to a method
that works on all surfaces. Farb and Margalit call it the Alexander method.
The idea is that if a homeomorphism ¢ moves a ‘filling’ collection of arcs and
curves «; so that the image curves ¢ o «; are isotopic to the «;, then in fact
¢ is isotopic to the identity.

Definition 8.4. Let S be a surface. A transverse collection of simple closed
curves and simple proper arcs {«;} is said to fill S if each component of the
cut surface Sy,,1 is a disjoint union of discs and once-punctured discs. For
such a collection «y, the structure graph I'y,,, is the graph obtained from
U; a; U 0S by placing vertices at the intersection points and punctures.

We are now ready to describe the Alexander method, which gives us
a practical method for checking that a homeomorphism is isotopic to the
identity.

Proposition 8.5 (The Alexander method). Let {«;} be a collection of es-
sential stmple proper arcs and closed curves on S without bigons, annuli or
triangles that fills S.

(i) If ¢ € Homeo"(S) has the property that, for some permutation o €
Sym(n), ¢; o oy is isotopic to o,y for each i, then ¢ induces an auto-
morphism ¢r of the structure graph I';,,y.
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(i1) If ¢r is trivial then ¢ is isotopic to the identity.
In particular, under the hypotheses of (i), ¢ has finite order in Mod(.S).

Proof. By Lemma [8.3] after composing ¢ with an ambient isotopy, we may
assume that ¢ preserves UU; a;, and hence induces an automorphism ¢r of
I'(a,}. This proves (i).

Next, assume that ¢r is trivial. Because ¢ is orientation-preserving, it
follows that ¢ also preserves the complementary regions adjacent to each
edge of I'(,,1. By the Alexander lemma, ¢ may be modified by an isotopy
on each component of the complement of 'y} to be the identity on that
component. This proves (ii). Finally, I'q,,, is finite, so ¢r has finite order,
and the final assertion follows from (ii). O

This gives a practical method for proving that a mapping class is trivial.
Of course, to apply the method we need a suitable collection of curves and
proper arcs. Note that, conversely, if ¢(«;) is not isotopic to «; for some i,
then ¢ represents a non-trivial mapping class.

Exercise 8.6. Every surface S has a filling collection «; of essential simple
closed curves and proper arcs that satisfy the hypotheses of Lemma[8.3] See
question 11 on Example Sheet 1.

Lecture 9: Dehn twists

Dehn twists in Mod(S) play the analogous role to elementary matrices in
SL.(Z).

9.1 Definition and the action on curves

Let A be an annulus xS, Choose an orientation on the S! factor; an orienta-
tion on A then determines an orientation on the I factor. The proof of Propo-
sition [7.1| tells us that the following homeomorphism generates Mod(A) = Z.

T(I, e27riy) - (I, eZm'(aH—y)) '

There is some subtlety about the choices in this definition. The opposite
choice of orientation on A would lead to the x coordinate being replaced by
1 -z, leading to the map 77! instead of 7. However, choosing the opposite
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orientation on the S! factor while keeping the orientation on A fixed leads
to the opposite choice of orientation on I also; so y is replaced by -y, and
x is replaced by 1 -z, and there is no change to 7. In summary, 7 depends
on the choice of orientation on A, but not on the orientation on the circle
S1. This generator is called a left Dehn twist. By embedding annuli in our
surface S, we may use this to define many mapping classes of our surfaces.

Definition 9.1. Let a be a simple closed curve in S, and let N be a reg-
ular neighbourhood of a. Choose a homeomorphism ¢ : A - N, and pull
back the orientation on S to an orientation on A. Consider the following
homeomorphism of S.

Ta(x):{LOTOL_l(]I) reN

T otherwise

The (left) Dehn twist in « is the mapping class of 7., denoted by T,.

Lemma 9.2. The mapping class T, is independent of the choices made in
the definition of 1o, and also only depends on the isotopy class of .

Proof. Fix an orientation on . We have N = a, U a_, where «, and a_
are isotopic to a and distinguished from each other by the orientation on
N. Let o' be an isotopic curve to o and N’ a regular neighbourhood of o/,
with ON’ = a/, ua_. Then a_ and o’ are isotopic, hence ambient isotopic, so
we may assume they are equal. Working in the cut surface S,_, we see that
a, and o/, are ambient isotopic, so we may assume that they too are equal.
This gives that NV and N’ are equal as subsets of S. Now the twists 7, and
T, define the canonical generator of Mod(/N') determined by the orientation.
Hence they are isotopic, as required. O

We finish the section by explaining how to draw the result of Dehn twist-
ing a curve. Let 3 be a simple closed curve on S, and let « intersect g
transversely. To draw T%(3) for some k > 0, we draw k#(a n [3) parallel
copies of «, and then modify the resulting picture by surgery. In this case,
since T, is a left Dehn twist, the surgery turns left from £ to a. Of course,
there is no a priori guarantee that the resulting curve cannot be simplified.
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Figure 1: A surgery to produce a left Dehn twist

9.2 Order and intersection number

Proposition implies that, in the case of an annulus, a Dehn twist has
infinite order. To generalise that fact to more complicated surfaces, we will
analyse how intersection numbers change when we Dehn twist.

Lemma 9.3. Let o be an essential simple closed curve, and let 3 be any
simple closed curve or simple proper arc. Then

i(T5(8), B) = |kli(a, B)?
for any k € Z.

Proof. After modifying [ by an isotopy, we may assume that o and [ are in
minimal position, with i(«, 3) intersection points. Let 3’ = 77(8), modified
by a small isotopy to make it transverse to 5. As described above, §’ can
be constructed as follows: take one parallel copy [y of 5 (moved slightly to
the left) and |k|i(a, B) parallel copies of a, and perform surgery. Since the
surgeries do not introduce any new points of intersection, this shows that
#(B',B) = |kli(cr, B)2. Therefore, it remains to show that 5 and ' do not
form any bigons, and hence are in minimal position.

Suppose therefore that § and 8’ form a bigon, bounded by arcs b € 8 and
b’ € B'. Orientation considerations show that the two intersections of b and b’
must have opposite orientations. Therefore, b’ either both enters and leaves
[ from the left hand side, or both enters and leaves [ from the right hand
side.
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If V' is on the right hand side of S then it follows that b’ is entirely
contained inside (some copy of) a, so a and § bound a bigon, contradicting
the assumption that they were in minimal position.

If ' is on the left hand side then, if we return to the set-up in the first
paragraph and push [, slightly to the right of 8 instead of to the left, we
find again that b’ is contained entirely inside some copy of «, which again
leads to a contradiction. O]

It follows easily that Dehn twists have infinite order.

Proposition 9.4. If « is an essential simple closed curve on S then T, has
infinite order in Mod(S).

Proof. The result is immediate from Lemma[9.3| together with the claim that
there is some simple closed curve or proper arc 8 on S with i(«, 3) >0. We
construct 8 according to various cases. By Proposition [7.1) we may assume
that S either has g>1 or n+b > 3.

If « is non-separating then the existence of a suitable 3 follows immedi-
arely from Corollary [6.2

If a is a boundary component, then it can be taken to lie on an 3-holed
sphere in S, and it is then easy to construct a suitable arc § with i(a, ) = 2.

Finally, if « is separating and not homotopic to a boundary, then it lies
on a four-punctured sphere Sy € S, dividing it into two twice-punctured
discs. It is again easy to exhibit a simple closed curve § on S with i(«, 8) = 2,
as required. O

Lecture 10: Multitwists and pairs of pants

10.1 Basic properties of Dehn twists

Lemma 10.1. Let o, 3 be essential simple closed curves on S. The Dehn
twists T,,Tp are equal if and only if o and B are isotopic (up to reversing
orientation).

Proof. If v and 3 are isotopic then T, = T by Lemma[9.2] Suppose therefore
that « and [ are not isotopic. By Lemma [9.3] it suffices to exhibit a curve
or proper arc v disjoint from S but with i(a,7) > 0. If i(a, 8) > 0 then we
may take v = . Otherwise, after an isotopy, « is disjoint from S, and so is
contained in a component X of the cut surface Sz. Since o and 3 are not
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isotopic, X is not a disc, once-punctured disc or annulus. It follows that X
contains a simple closed curve or proper arc v with i(c, ) > 0, disjoint from
B. Regluing along 3, we may take v to be a curve or arc in 3, and the result
follows. O

Remark 10.2. If « is an essential simple closed curve and ¢ is a homeomor-
phism of S (which we conflate with its mapping class) then ¢T,¢! = Tyoq.
By Lemma m, T, and T} are conjugate if and only if there is a homeomor-
phism ¢ such that a*! = ¢ o 3; i.e., if and only if o and [ are of the same
topological type.

These observations enable us to immediately characterise the centralisers
of Dehn twists.

Lemma 10.3. Let ¢ € Mod(S) and let o, 8 be curves on S. Then:
(1) ¢ commutes with T, if and only if ¢ o «v is isotopic to o*'; and
(11) T, commutes with T if and only if i(a, B) = 0.

Proof. Ttem (i) follows immediately Remark and Lemma [10.1]

For (ii), it follows from (i) that 7, commutes with 7j if and only if
Ts(a) = a. This is clearly true if i(«a, 3) = 0, since o can be made disjoint
from a regular neighbourhood of 5 by an isotopy. Conversely, if Ts(a) = «
then

0=i(Ts(a), @) = i(a, 8)*
by Lemma and so i(«, 5) = 0 as required. ]

10.2 Multitwist subgroups

We often find ourselves not just interested in simple closed curves, but in
finite, disjoint collections of them.

Definition 10.4. A multicurve on S is a finite set of essential, pairwise non-
isotopic, simple closed curves on S. We write o = oy U ... U v,. A mapping
class of the form

Th .. Tk
is called a multitwist.

Multitwists give natural examples of large abelian subgroups of mapping
class groups.

32



Proposition 10.5. If « is a multicurve, then the map Z" — Mod(S) given

by
(k... k) TH T

15 an injective homomorphism.

Proof. Because the «; are disjoint, the map is a homomorphism by Lemma
103l

To prove that it is injective, suppose without loss of generality that ky # 0.
Consider the cut surface Sy,,  q,, and let Sy be the component that contains
1. Since « is a multicurve, «; is an essential simple closed curve in Sy
not parallel to an boundary components labelled as,...,«a,. It follows that
there is a simple closed curve or proper arc 3 on Sy, with endpoints not on
a3, ..., 0y, such that i(aq, 5) > 0. Since £ is disjoint from the «a; for i > 1 we
have

T(fQQT(fZ(ﬁ):Bv

while (75 (5),8) # 0 by Lemma . Hence TX'...Tk" is non-trivial, as
required. O]

It follows immediately from Proposition and Lemma that sur-
faces with boundary have corresponding central subgroups.

Corollary 10.6. If S =S, ., then the multitwist subgroup in the boundary
multicurve forms a central subgroup of Mod(S) isomorphic to Z°.

10.3 Pairs of pants

The surface Sy 3 is called the pair of pants. It plays an important role, since
if we cut a closed surface up maximally along pairwise non-isotopic curves,
the resulting pieces will all be pairs of pants. When there are punctures, we
may also obtain the punctured annulus Sy ;2 and the twice-punctured disc
So,2,1- We now know that the mapping class groups of these surfaces contain
Dehn twists. In this section, we will see that these account for (almost) the
entire mapping class groups.

Theorem 10.7. Let S =Sy, with n+b=23. The kernel of the natural map
Mod(S) - Sym(n) is equal to the multitwist subgroup in the boundary. In
particular, Mod(Sp03) = Z3, Mod(Sy12) = Z?, and Mod(Sp21) 2 Z x Z/2.
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Proof. We may choose a disjoint pair of simple proper arcs {aj,as} in S
that satisfy the hypotheses of the Alexander method. Embed S into Sy3
by capping boundary components off with once-punctured discs, and extend
the a; to arcs a; in Sy 3.

Let ¢ € Mod(S) lie in the kernel of the natural map to Sym(n), and let ¢
be the result of extending ¢ to Sp 30 by the identity. Lemma shows that
each ¢oa; is isotopic to @&;. Restricting the isotopy to S, it follows that ¢ o«
is isotopic to «;, where the isotopy is not required to restrict to the identity
on 0S.

Let S be obtained by doubling S along 85, and likewise double a; and ¢
to simple arcs or curves &; and a homeomorphism gg in S. Then each gzgo Qy
is isotopic in S to é&;, and so, after a small isotopy to make them transverse,
if od; is not disjoint from &y then there is a bigon D in S bounded by
subarcs of &; and (15 °0dy.

Consider the intersection of D with the multicurve 8S in S, which we
may assume to be transverse. If this intersection is empty, then the bigon
D is contained in S, and so we may modify ¢ by an isotopy and reduce
the number of intersections between «; and ¢ o . If the intersection is
non-empty, then a ‘corner’ of D gives us a half-bigon A: an innermost disc
bounded by subarcs of a;y, ¢ o aq, and some component § of 3S. If there is a
half-bigon, the surgery description of Dehn twists shows that, for some Dehn
twist 73! we have that

#(arnTy °¢°0Z1)=#(0410¢0011)+17

but 78 o ¢ oy and «a; together bound a bigon, and so we may modify ¢
by a homotopy to reduce the total intersection by 2. By induction, after
composing ¢ woth some 7 in the boundary multitwist subgroup of S, we
may assume that ¢ =70 ¢ fixes a;.

We finish as usual by a cut-and-paste argument. The homeomorphism
1) defines a self-homeomorphism ) of the cut surface S,,, which has Euler
characteristic 0 and at least one boundary component. If S, is a punctured
disc then 1 is isotopic to the identity by the Alexander lemma. Otherwise,
Sa, 1s an annulus, and so Mod(S,, ) = (T¢) where € is isotopic to the boundary
component of S not touched by a;. Thus, there is k € Z such that 7% o)
fixes a up to isotopy. Regluing, TF o1 =7F o7 0 ¢ fixes both oy and s up
to isotopy, and so ¢ = 771 o 7% as required. O]
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Lecture 11: Subsurfaces

11.1 The inclusion homomorphism

We have now computed the mapping class groups of all but one of the the
oriented finite-type surfaces of Euler characteristic at least —1. (For the
one-holed torus Sj g1, see question 11 on problem sheet 2.) The mapping
class groups of more complicated surfaces will not usually be isomorphic to
well-known groups.

Instead, we will analyse them inductively by relating Mod(.S) to the map-
ping class groups of the subsurfaces of S. A connected subsurface > ¢ S is
called essential if the induced homomorphism 73 — 715 is injective. By the
Seifert—van Kampen theorem, this is equivalent to requiring that no compo-
nent of the complement S-% is an open disc, or equivalently, that any simple
closed curve in ¥ that bounds a disc in S bounds a disc in X.

Let X be a subsurface of S. There is a natural continuous homomorphism

Homeo" (X, 9%) - Homeo™ (S, 95),
given by extending each homeomorphism of > by the identity on S — 3.

Definition 11.1. The induced homomorphism ¢ : Mod(X) - Mod(S) is
called the inclusion homomorphism.

The first goal of this subsection is to analyse the inclusion homomorphism,
and in particular to prove that it is often injective. We need a lemma that
helps us to promote isotopies in S to isotopies in .

Lemma 11.2. Let X be a closed[]] essential subsurface in S, and let o, 8 be
essential simple closed curves in 3 that are mot isotopic into 0X. If « is
1sotopic to B in S then a is isotopic to [ in X.

Proof. Make « and (3 transverse by a small isotopy. As usual, we may reduce
#(an B) by removing bigons in S, but since ¥ is essential, each bigon is
contained in X. Therefore, we may assume that o and [ are disjoint, and so
bound an annulus in S. But since neither a nor § is homotopic into 9%, this
annulus is contained in Y, which completes the proof. O

4Closed’ in the sense that the complement is open.
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With this lemma in hand, we can completely describe the kernel of the
inclusion homomorphism.

Theorem 11.3. Let S be a surface of finite type, and > a connected, essen-
tial, closed subsurface. Let aq,...,a,, be the components of 0% that bound
punctured discs in S—X. Let By, ..., 3% be the components of 0% that bound
annuli in S — 3. The kernel of the inclusion homomorphism

¢t : Mod(X) — Mod(S)
is the central free abelian subgroup
(Talw--vTauTﬁfT_;l?---aTBzTﬁ_;L1>~

Proof. We will prove that an element ¢ of the kernel of ¢ is a multitwist in
0%, from which the result follows by Proposition [10.5]

The proof has various cases, depending on the topological type of . If
Y. has genus zero and n + b < 3, then our descriptions of Mod (%) show that
any homeomorphism of > that fixes the punctures is isotopic to a multitwist
in the boundary, and the result follows.

In the remaining cases, > either has genus at least one, or has at least
four punctures and boundary components. In these cases, it is possible to
find a collection of essential, simple closed curves {;} on ¥ without bigons,
annuli or triangles, such that no ~; is homotopic to a boundary component,
and such that every component of the cut surface ¥, is either a closed disc,
a punctured disc or an annulus. Furthermore, the annular components have
the property that one side is a component of 0%, and each ~; intersects the
other side in at most one arc. Finally, the structure graph I'y,,, is connected.

If a homeomorphism ¢ is in the kernel of ¢ then, for each i, ¢ o ~; is
isotopic to 7; in S, and hence in ¥ by Lemma [11.2] By the Alexander
method (Proposition , ¢ induces an automorphism ¢r of I'y,y, and we
claim that ¢r is trivial. Indeed, there is nothing to prove unless ¥ is a proper
subsurface of S, and in this case 0¥ is non-empty; in particular, at least one
of the complementary components of I'y,,; is an annulus, and is preserved by
¢. By construction, ¢r preserves the cycles v;, so since the intersection of a ~;
and an annular component is connected, it follows that ¢r fixes at least one
edge of I'(,,;. Since ¢ is orientation-preserving, if ¢r fixes an edge incident
at a vertex then it also fixes all the other edges incident at that vertex. It
follows that ¢r is the identity, because I'y,,y is connected.
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As in the Alexander method again, we may isotope ¢ so that it is equal to
the identity on the complementary components that are discs or punctured
discs. The resulting ¢ is supported on an annular neighbourhood of 9%, and
so the result follows. m

11.2 Cut surfaces and stabilisers

One kind of essential subsurface that has played an important role is the
cut surface S, associated to a multicurve . The cut surface is often not
connected, but the definition of mapping class groups still makes sense. In
fact, for a cut surface S,, it is not hard to see that the mapping class group
is just the direct product

Mod(S)z J] Mod(%),

Yemp(S)

where ¥ ranges over the components of SP| The next result relates the
mapping class group of the cut surface S, to the oriented stabiliser

Mod,(5) := {[¢] e Mod(S) | ¢ o ov; ~ «; for all i}

(Note that Mod,(S) may be properly contained in the group of mapping
classes that preserve a but are allowed to reverse orientation of the compo-
nents.)

Proposition 11.4. Let S be a connected surface of finite type, and a a
multicurve on S with n components. There is a central extension

1 - 7" - Mod(S,) - Mod,(S) - 1

where Z™ is generated by the multitwists Ta;.To}l, as a; ranges over the com-
ponents of a.

Proof. By construction of the cut surface, for each component «; of «, the
pair o and o bound an annulus in S, and Theorem asserts that the
kernel is generated by the differences of these.

SFor general disconnected surfaces, it may be possible to permute the components.
However, in the case of a cut surface S,, every component contains a boundary component,
which has to remain fixed.
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It remains to check that the image of Mod (S, ) under the inclusion homo-
morphism is equal to Mod, (.S). By construction, each ¢ € Mod(S,,) extends
to a homeomorphism of S that fixes «, and so its image is contained in
Mod, (S). Conversely, if a homeomorphism ¢ of S has the property that
¢oa; ~q; for all ¢ then, by Lemma [8.3] we may modify ¢ until it fixes the
a; pointwise; ¢ then extends to a homeomorphism of S,, and surjectivity
follows. [

Lecture 12: Forgetting boundary components
and punctures

12.1 Capping

To study all mapping class groups inductively, we need to understand how to
remove punctures and boundary components. We will do this in two stages.
First, we will cap off boundary components by punctured discs. This has the
effect of turning a boundary component into a puncture, and is a relatively
simple operation, whose result is determined by Theorem [I1.3] Second, we
remove a puncture and study the result. This operation is more subtle, and
is determined by the Birman exact sequence.

At both stages of the process, the fact that mapping class groups are
allowed to permute punctures introduces problems. For this reason, it is
more convenient to work with the pure mapping class group — the surface of
finite index that fixes the punctures.

Definition 12.1. Let S be a surface of finite type with n punctures. The pure
mapping class group PMod(.S) is the kernel of the natural map Mod(S) —
Sym(n).

So the pure mapping class group is a natural subgroup of index n! in
Mod(.5).

A particularly important instance of Theorem [11.3]explains what happens
when we cap a boundary component with a once-punctured disc.

Corollary 12.2. Let a be the simple closed curve corresponding to a bound-
ary component of Sgnp. There is a central extension

1 - (T,) = PMod(Sns) - PMod(S, ni11) = 1
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where 1 is the inclusion homomorphism induced by gluing a punctured disc
along .

Proof. The kernel is (T,) by Theorem . It remains to prove that ¢ is
surjective. Let ¢ € Homeo" (Syn+1-1,0S,n+14-1) fix the punctures. There-
fore, ¢ o a is homotopic to a and so, by Lemma 4.2 we may modify ¢ by an
isotopy so that ¢ fixes a. By the Alexander lemma, we may further isotope
¢ to be equal to the identity on the punctured disc bounded by «, and it
follows that ¢ is in the image of ¢, as required. O

We can use this result to compute mapping class groups of surfaces with
boundary from mapping class groups of surfaces with punctures — see, for
instance, question 11 on problem sheet 2.

12.2 The Birman exact sequence

In the last section, we understood what happens when a boundary component
is filled in by a punctured disc. But what about when the puncture itself is
filled in? The effect of this is more subtle, and is explained by the Birman
exact sequence. We will use the following notation: if S is a surface, then S,
denotes that surface with an additional puncture.

Theorem 12.3 (Birman exact sequence). Let S be a surface of finite type
with x(S) < 0. Then there is a short exact sequence

1 - m(S) - PMod(S,) - PMod(S) -1

The usual proof, which was Birman’s original one, uses some sophisticated
machinery. One shows that Diffy(.S;05) is contractible, and that the natural
map

Diff(S,,0S,) = Diff (S,0S5) - S

where the second map is evaluation at =, is a fibre bundle. The result then
follows from the long exact sequence of homotopy groups for a fibration.

In keeping with the spirit of this course, however, we will give a low-tech
proof here, going via the automorphism group of the fundamental group of
the surface.

Definition 12.4. Let G be any group, and v € G. A conjugating automor-
phism
by g gy
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is called an inner automorphism of G. The group of inner automorphisms is
denoted by Inn(G). It is isomorphic to G/Z(G), and is a normal subgroup
of Aut(G). The quotient

Out(G) := Aut(G)/Inn(G)
is called the outer automorphism group of G.

Thinking of the added puncture * as a base point, any homeomorphism
¢ of S that fixes * induces an automorphism ¢, of (S, *). Since (based) ho-
motopies induced the same automorphism, we obtain a natural map PMod(S,) —
Aut(mS). (We used this homomorphism earlier, when computing the map-
ping class group of the punctured torus.)

Something a little more interesting happens when we forget the puncture.
Let ¢ represent an element of PMod(S). A choice of base point and a path
from * to ¢(*) leads to an induced automorphism of 7.5, well defined up
to conjugation — in other words, ¢ induces an outer automorphism of 7 S.
From this discussion, and using the fact that the fundamental group of a
hyperbolic surface group has trivial centre, we see that there is the following
commutative diagram with exact rows.

PMod(S.) —— PMod(9)

| |

1 —— m(S) —— Aut(mS) — Out(mS) — 1

The idea of our proof of the Birman exact sequence is now to pull back
the exact sequence in the bottom row, using the following lemmas.

Lemma 12.5. For any connected surface S, the natural map PMod(S,) —
PMod(S) is surjective.

Proof. For any ¢ € Homeo" (S, 05), there is a path from * to ¢(*). Now, we
may defined an isotopy 1. of S, starting at the identity, so that ¢ (*) = ¢(*).
Now ;!0 ¢ is an isotopy from ¢ to a homeomorphism that fixes %, which
proves the lemma. O

Lemma 12.6. For any connected surface of finite type with empty boundary,
PMod(S,) = Aut(S) is injective.

40



Proof. There is a filling set of loops {a;} in S based at x (equivalently,
proper arcs in S, with endpoints on *) without bigons, annuli or triangles,
that generate mS. If ¢ € PMod(S,) and the induced automorphism ¢, of
m.S is trivial then, for each i, ¢ o «; is homotopic to «;. Therefore, by
the Alexander method, ¢ preserves the structure graph up to isotopy. But
the structure graph has a single vertex, and ¢ preserves the orientation of
each edge, so the induced graph automorphism ¢r is trivial. Therefore, ¢
represents the trivial mapping class, as required. O

The final lemma describes the image of 7S in Aut(m.S). Let o be an
oriented simple closed curve on S, based at *. Let «, be the curve «, pushed
slightly to the right, and let o~ be the same curve pushed slightly to the left;
note that both of these are well-defined simple closed curves on the punctured
surface S,.

Lemma 12.7. Let « be an oriented simple closed curve on S based at *, as
above. The map

m(S) = Aut(m.5)

sends « to the automorphism induced by the mapping class
TOé+ ° To:_l :
In particular, as subgroups of Aut(mS), m1(S) € Mod(S,).

Proof. We may extend « to a standard generating set of based curves g for
m.S. It now suffices to check that, on each element S of this set, the curve
Ta, 0T, 0 B is based homotopic to the conjugate a- - a~!. There are several
cases to consider.

If 5=« then 7,, o7,! fixes «, which matches up with the fact that
a-a-at

In the remaining cases, 8 intersects « only at the base point *, and we
divide into two further cases: either 3 leaves « on one side and returns on
the other, in which case [ intersects each of a, and a_ exactly once, with
opposite orientations, or 3 leaves a on one side and returns on same side, in
which case (8 intersects either a, or a_ twice, once with either orientation.
In either case, the result of applying the homeomorphism 7,, o 7;! can be
drawn explicitly using the surgery description of Dehn twists, and the result
is visibly based isotopic to «- 5 -a~t. ]

~ .
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Remark 12.8. The subgroup m15 € Mod(S,) is called the point-pushing sub-
group, and is an important source of interesting mapping classes on punctured
surfaces.

We are now ready to prove Theorem [12.3]

Proof of Theorem[12.3, First, assume that S = @. By Lemmal[12.5, PMod(S.) -
PMod(S) is surjective, i.e. that the sequence is exact at PMod(\5).

To prove exactness at PMod(S,), we need to prove that a mapping class
¢ is in the kernel of the map to PMod(S) if and only if it is point-pushing.
From Lemma [12.7] the image of each generator o of m1(S) is of the form
T,, oT;'. Since a, and «_ are isotopic in S, the point-pushing subgroup is
contained in the kernel of the map to PMod(S). For the other direction, if ¢
is in the kernel of the map to PMod(.S) then it represents a trivial element
of Out(71(S)) and so the induced automorphism ¢, is inner. Therefore ¢ is
point-pushing by definition.

The final part of exactness is to prove the injectivity of the map m1(S) —
PMod(S,). Since m1(S) has trivial centre (by, for instance, Question 7 of
Example Sheet 1), the map m(S) - Aut(m(.S) is injective. But it factors
through 71(S) - PMod(S,), so that map must also be injective.

Suppose now that S has b > 0 boundary components, and let S be the
result of capping off the boundary components of 9S with punctured discs.
Likewise, let S, be the result of capping off the boundary components of 9.5,.
We now have the following commutative diagram. The two copies of Z° are
generated by Dehn twists in the boundary, so the left-hand column is exact.
The right-hand column is exact by the case without boundary. The top row
is exact because the inclusion S — S induces an isomorphism of fundamental
groups, while the middle and bottom rows are exact by inductive application

of Corollary [12.2]
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~ v

I —— m(8) ———— m(S) —— 1

~ ~ v

1 S/ > PMod(S,) — PMod(S,) — 1

~ ~N ~

1 W/ > PMod(S) —— PMod(S) —— 1

~ ~ ~

1 1 1

A routine diagram chase then shows that the middle column is exact, which
completes the proof. O

Lecture 13: The complex of curves

13.1 Generation by Dehn twists in the genus-zero case

As an immediate application of the Birman exact sequence, we can prove a
generation result for pure mapping class groups of genus-zero surfaces.

Corollary 13.1 (Dehn, 1938). Let S = Sp . for any n,b. There is a finite
collection of simple closed curves on S such that Dehn twists in that collection
generate the pure mapping class group PMod(S). In particular, Mod(S) is
finitely generated.

Proof. Suppose first that b = 0. The result about PMod(S) is trivially true
in the base cases when n < 3. For larger n, the Birman exact sequence gives
us that

1- 71(8) g PMOd(SQ’m()) g PMOd(SO’n_Lo) - 1.

Therefore, PMod(Sy ,.0) is generated by the images of the generators of 71 (.5)
and any choice of lifts of the generators of PMod(Sy,-10). By induction, the
latter is generated by a finite collection of Dehn twists, and it is immediate
from the definition that any Dehn twist on Sp,-10 can be lifted to a Dehn
twist (in the same curve) on Sp 0. Furthermore, Lemma [12.7)shows that the
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image of 71(S) is also generated by a finite collection of Dehn twists, and
the result follows.
For b > 0, the result follows by induction on b, using Corollary [12.2]
Since Mod(S) has a subgroup of finite index that is finitely generated,
Mod(.S) is also finitely generated (for instance by adding coset representatives
to the generating set). O

The same proof actually shows that generation by Dehn twists depends
only on the genus.

Corollary 13.2. Let S =S, for any g,n,b. There is a finite collection of
simple closed curves on S such that Dehn twists in that collection generate
the pure mapping class group PMod(S) if and only if the same is true for
the pure mapping class group of the closed surface PMod(S,).

13.2 Definition and connectivity

Our final major goal for the course is to prove the analogue of Corollary
for higher-genus surfaces. The strategy of the proof is to relate Mod(.S)
to the mapping class groups of its subsurfaces. In order to do this, we
need to explain how Mod(S) is ‘built’ from the mapping class groups of its
subsurfaces. Algebraically, it’s not easy to say what it means for a group to
be ‘built’ from its subgroups in this way, but there is a nice topological way
to say it: if G acts on a sufficiently nice complex X, the GG is ‘built’ from the
stabilisers of the cells of X.

The meaning of ‘sufficiently nice’ depends on what you want to prove. In
this case, wanting to prove results about generating sets of GG, we will need to
know that X is connected. If we wanted to prove results about presentations
for G, we would want to know that X was simply connected.

In any case, our task is then to define a complex on which Mod(SS) acts
naturally — the complex of curves.

Definition 13.3. Let S be a surface of finite type. The complex of curves
of S is the following simplicial complex C'(.S).

(i) The vertices of C(S) are the unoriented isotopy classes of essential
simple closed curves in S that are not homotopic into 05S.

(ii) A collection of such isotopy classes {[ap],...,[an]} spans a simplex
whenever the a; have mutually disjoint representatives; or, equivalently,
whenever i(o;, ;) =0 for all 7, j.
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The 1-skeleton of C'(S) is called the curve graph of S. Note that Mod(S)
acts naturally on C'(S) by simplicial automorphisms.

The definition treats punctures and boundary components similarly, and
so we will assume for this section that JS = &, and write S =S, ,,.
For the simplest examples, the complex of curves is not very interesting,

Ezample 13.4. 1If g =0 and n <3 then C(95) = @.

Example 13.5. If g=0and n =4 or g =1 and n < 1, every pair of essential
simple closed curves on S intersects. Therefore, C'(S) is a disjoint union of
points.

These examples can be summarised as the cases when 3g+n < 4. Our next
result shows us that we get better behaviour for more complicated surfaces.

Theorem 13.6. If 3g+n > 5 then C(S) is connected.

Proof. Let «, B be essential, non-boundary-parallel, simple closed curves on
S. It is enough to find a finite sequence of essential simple closed curves

Q:&Oa&lw"?an:ﬁ

such that i(«;, a;41) = 0 for each i. The proof is by induction on i(a, 8), with
the cases i(«a, 8) =0 and i(a, §) = 1 as the base cases.

If i(or, 8) = 0, we may take oy = o and ay = 3, and there is nothing to
prove.

If i(a, B) = 1 then a regular neighbourhood N of au /3 is a subsurface
with one boundary component and Fuler characteristic -1, hence a one-holed
torus. Since 3g+n > 5, the complement of N has at least one isotopy classes
of essential curve aq not parallel to 0.5, which completes the proof.

For the inductive step, assume that i(a, ) > 1 and that « and ( are
transverse and in minimal position. Choose orientations on o and g and
consider two intersection points x,y € an 3 that are consecutive on 3, joined
by a subarc b of §, beginning at x and ending at y. There are two cases
to consider, depending on whether the crossings at x and y have the same
orientations or different orientations.

Suppose first that they have the same orientations. Let a be either of the
subarcs of o from x to y, and let v be the loop obtained by concatenating a
and b. By construction, i(«,v) = #(anvy) =1, so 7 is essential. Furthermore,
after a small isotopy, we see that ~ intersects 5 in the same points as « does
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except for x and y, which are replaced with a single intersection point z; so
i(B,7) <i(a, B).

Next, suppose that the two crossings have opposite orientations. Let
a1, as be the two subarcs of 5 that start at x and end at y, and let 7; be the
simple closed curve obtained by concatenating b with a; (reversing orientation
if necessary). By construction, i(«, ;) = 0 and the intersection points of
with v; are (after a small isotopy) a strict subset of the intersection points
of a and 3, so i(3,7v;) < i(c, ). Neither ; can bound a disc, as otherwise
« and 8 were not in minimal position. If one of the ~; does not bound a
punctured disc, then set v to be that ;.

If both ~; bound punctured discs, then gluing them together along b, it
follows that a bounds a twice-punctured disc. Reversing the roles of o and
£, we may also assume that § bounds a twice-punctured disc. It follows
that a and [ intersect twice, and are contained on an embedded subsurface
homeomorphic to Sy 31 — the sphere with three punctures and one boundary
component. The boundary component ~ is then a simple closed curve disjoint
from both o and 3, and is essential because 3g +n > 5.

In each case, there is an essential simple closed curve v on S that does
not bound a puncture, and such that i(a,7) <1 and (v, ) <i(a, ). The
result now follows by induction. O]

Lecture 14: The complex of curves, continued

14.1 Non-separating curves

This connectivity of C'(S) will translate into an algebraic result about the
finite generation of Mod(.S). We will have fewer cases to consider in the proof
if we restrict our attention to non-separating curves. In light of Corollary
13.2, we only need to consider closed surfaces S, = Sy 0.

Corollary 14.1. Let S = S,. If g > 2 then every pair of isotopy classes of
non-separating curves o, B in C(S) is joined by a sequence of non-separating
curves «; such that o; and oy are disjoint for all 7.

Proof. Consider a shortest sequence

=, O, ..y Oy, Oy = 3
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guaranteed by Theorem [I3.6] If «v,_; is itself non-separating, then the result
follows by induction on n. Otherwise, oy, is separating. Since n is minimal,
ay,—2 and [ must live in the same component of S, _,, or else they are disjoint
and a,,-1 can be removed from the sequence. The other component ¥ of S, _,
has positive genus since S is closed, so we may find a non-separating curve
o' in it, disjoint from both «,,_; and 8. Replacing «,,_; by o/, the result now
follows as before by induction. n

14.2 Generation by Dehn twists

How does connectivity of a complex relate to finite generation of a group
acting on that complex? The connection is via the following lemma, which
is one of the basic ideas in the subject of geometric group theory.

Lemma 14.2. Let X be a path-connected topological space, and let G be a
group acting on X by homeomorphisms. Suppose that'Y is an open subset
whose G-translates cover X ; that is, GY = X. Then the set of elements

{geG|gY nY = @&}
generates G.
Proof. Exercise. m

A sample application is that the fundamental group of a compact manifold
is finitely generated. Moreover, using Lemma together with our results
so far, it is not difficult to show that every mapping class group Mod(S)
is finitely generated. However, we will not use this lemma directly here.
Instead, we will use a modified version, adapted to working specifically in
our context.

Fix a non-separating simple closed curve o on S, and consider all non-
separating curves (5 on S that are disjoint from, and not isotopic to, . By the
change of coordinates principal, there are at most finitely many Mod(S,)-
orbits of these curves f; fix orbit representatives {31, ..., Bk }.

Change of coordinates also tells us that there are homeomorphisms ¢;
such that ¢; o a = ;. (Below, we shall exhibit such ¢; explicitly.) The
connectivity of C'(S) now gives a generating set for Mod(.S).

Lemma 14.3. If g > 2 then the set
StabMod(S)(a) U {¢1a SRR qbn}
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generates Mod(S).
Proof. Let g € Mod(S). By Corollary [14.1} there is an edge-path in C'(S),

all of whose vertices are non-separating curves, from « to g(«). By change
of coordinates, each vertex is in the same orbit as «, and so the vertices of
this path are

O, G1O o oy 1 G O = QX

for some g; € Mod(S). By induction on m, we may assume that g, 1 is in
the subgroup generated by Stabyioacs)(a) U {¢1,...,¢n}.

The curve v = g, ,ga is a simple closed curve in S, non-separating in .S,
and

i(0, ) = i(gm-10, gm-17) = i(gm-10v, gar) = 0.

Therefore v is disjoint from a (up to isotopy) and so y = h3; for some j and
some h € Stabyieasy(v). Since B = ¢;(ar), we have

9 = g1 = Gm-1hBj = gm-1ho; ()
and the result follows. O

To complete the proof that Dehn twists generate, we need to analyse the
mapping classes ¢;. The next lemma shows that we may take them to be
products of Dehn twists.

Lemma 14.4. For any pair of disjoint, non-separating simple closed curves
a, B on S, there is a sequence of Dehn twists taking o to 5.

Proof. First, we claim that there is a simple closed curve v on S such that

i(e,y) =i(B,7) =1.

Indeed, fix points x on o and y on 3, and consider the cut surface S, g
obtained by cutting along both curves. Let x, and y, be corresponding
points on the boundary components «, and f..

Since S, is connected, a. lies in the same component of S, 3 as 5, (with-
out loss of generality, after possibly reversing the orientation of ). Let v,
be an proper arc from x, to y,. Now «_ is in the same component as [5_, so
we may also take v_ to be a proper arc from y_ to x_. Furthermore, v, does
not disconnect its component of S, g, so we may certainly choose v_ to be
disjoint from 7,. The two arcs v, reglue in S to a simple closed curve in ~
in S intersecting each of o and [ exactly once, as claimed.
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Applying Question 8(a) of Problem Sheet 2 twice, T,T,(a) = v and

T’YT[;(V) = ﬁa 50
T,T5T,T,(a) =

as required. O

Before giving the final proof, we also need to analyse non-trivial coset
representatives of the oriented stabiliser Mod,, (.S) in the unoriented stabiliser
Stabyiod(s)y(a). The next lemma shows that it can be generated by Dehn
twists.

Lemma 14.5. For any pair of simple closed curves o, § with i(a, 5) =1,
TpTaTs(a) =a™
where o=t denotes the same curve with the opposite orientation.

Proof. By change of coordinates, it suffices to perform this computation for
the standard pair of curves on the one-holed torus. There, it can be checked
by the usual surgery picture for Dehn twists, or by direct computation in
SLy(Z). O

We are now ready to prove our main theorem.

Theorem 14.6. Let S be any connected, oriented surface of finite type.
There is a finite set of simple closed curves on S whose Dehn twists gen-
erate PMod(S). Moreover, Mod(S) is finitely generated.

Proof. By Corollary [I3.1] it suffices to prove the theorem for the case of
genus g > 0. By Corollary [13.2] it suffices to prove the theorem in the case
of the closed surface S = Sy, in which case PMod(S) = Mod(S).

By Corollary [8.1], the case g = 1 corresponds precisely to the well known
fact from linear algebra that SLy(Z) is generated by the elementary matrices

(1) (27

For genus g > 2, we proceed by induction. Fix a non-separating simple
closed curve a in S. By Lemma [14.3, Mod(S) is generated by Stabyoacs) ()

together with the elements {¢y,...,¢r}. By Lemma [14.4] there is a finite
set of Dehn twists that generates the ¢;. The stabiliser Stabyioqcs)(a) is a
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degree-two extension of the oriented stabiliser Mod,,(S) and, by Lemma m,
the non-trivial coset representative can be generated by a finite collection of
Dehn twists.

Therefore, it remains to prove that Mod, (.5) is generated by finitely many
Dehn twists. Proposition shows that Mod, (S) is the image of Mod(S,,)
under the natural inclusion homomorphism (which takes Dehn twists to Dehn
twists). Since « is non-separating, the genus of the cut surface S, is smaller
than g, and so the theorem follows by induction. O]
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